Shear reinforcement design:
Vs = Vu – φVc
= 40.84 – (2 * 0.85√3500 * 10 * 16) / 1000 = 24.78 kip
4 √fc bw d = (4√3500 * 10 * 16) / 1000 = 32.183 kip
Vs < 4√fc bw d So, ok
Stirrup spacing:
1) Smax = Avfy / 50 bw = (2 * 0.11 * 60000) / 50 * 10 = 26.40”
2) Smax = d / 2 = 16 / 2 = 8”
3) Smax = 24”
4) S = φ Avfy d / Vs= 0.85 * 2 * 0.11 * 60000 * 16 / (24.78 * 1000) = 7.24”
Use stirrups # 3 bar @ 7” c/c
Design of the beam: B13, B15, B16, B18, B19, B21, B22, B24 (at 4th story)
From load combination:
Maximum moment at end section
Negative moment = 64.59 k – ft
Mu = ф ρfy bd² (1- 0.59 ρfy / f’c)
d² = Mu / (фρfy bd (1- 0.59 ρf / f’c)
ρ max = 0.75 ρb, ρb = 0.85 β1 f’c / fy * 87000 / (87000 + 60000)
= 0.85 * 0.85 * 3.5 / 60 * 87000 / (87000 + 60000) = 0.02494
ρ max = 0.75 * 0.02494 = 0.0187
d² = 64.59 * 12 / 0.90 * 0.0187 * 60 * 10 (1-0.59 * 0.0187 * 60 / 3.50)
d = 9.72, Clear cover = 2”, Total depth = 9.72 + 2= 11.72. Say, d = 12”
Provided Beam size = 12” * 10”, d = 12”- 2”= 10”
Main steel calculation:
As = Mu / φfy (d – a / 2)
= 64.59 * 12 / 0.90 * 60 (10 – 1 / 2) = 1.51 in², a = Asfy / 0.85f’c bw
a = 1.51 * 60 / 0.85 * 3.50 * 10 = 3.045
As = 64.59 * 12 / 0.90 * 60 (10 – 3.045 / 2) = 1.693 in²
a = 1.693 * 60 / 0.85 * 3.5 * 10 = 3.414 in.
As = 64.59 * 12 / 0.90 * 60 (10 – 3.414 / 2) = 1.73 in². Use – 2 # 7 +2 # 5 bars
Main steel calculation:
Mid section:
As = Mu / φfy (d – a / 2)
= 51.98 * 12 / 0.90 * 60 (10 – 1 / 2) = 1.215 in², a = Asfy / 0.85f’c bw
a = 1.215 * 60 / 0.85 * 3.50 * 10 = 2.450 in.
As = 51.98 * 12 / 0.90 * 60 (10 – 2.45 / 2) = 1.316 in²
a = 1.316 * 60 / 0.85 * 3.50 * 10 = 2.609 in.
As = 51.98 * 12 / 0.90 * 60 (10 – 2.609 / 2) = 1.328 in². Use – 2 # 6 +2 # 5 bars
Shear reinforcement design:
Vs = Vu – φVc
= 25.40 – (2 * 0.85√3500 * 10 * 10) / 1000 = 15.34 kip
4 √fc bw d = (4√3500 * 10 * 10) / 1000 = 23.66 kip
Vs < 4√fc bw d So, ok
Stirrup spacing:
1) Smax = Avfy / 50 bw = (2 * 0.11 * 60000) / 50 * 10 = 26.40”
2) Smax = d / 2 = 10 / 2 = 5”
3) Smax = 24”
4) S = φ Avfy d / Vs = 0.85 * 2 * 0.11 * 60000 * 10 / (15.34*1000) = 7.31 ”
Use stirrups # 3 bar @ 5” c/c
Design of the beam: B1, B3,B4, B6, B7, B9, B10, B11 ( at 4th story )
From load combination:
Maximum moment:
End section:
Negative moment = 87.25 k – ft
Mu = ф ρfy bd² (1- 0.59 ρfy / fc)
d² = Mu/ фρfy bd (1- 0.59 ρfy / fc)
ρ max = 0 .75 ρb, ρb = 0.85 β1 f’c / fy * 87000 / (87000 + 60000)
= 0.85 * 0.85 * 3.5 / 60 * 87000 / (87000 + 60000) = 0.02494
ρ max = 0.75 * 0.02494 = 0.0187
d² = 87.25 * 12 / 0.90 * 0.0187 * 60 * 10 (1- 0.59 * 0.0187 * 60 / 3.50)
d = 11.29, Clear cover = 2”, Total depth = 11.29 + 2= 13.29. Say, d = 15”
Provided Beam size = 15” * 10”, d = 15”- 2”= 13”
Main steel calculation:
As = Mu / φfy (d – a / 2)
= 87.25 * 12 / 0.90 * 60 (13 – 1 / 2) = 1.551 in², a = Asfy / 0.85fc bw
a = 1.551 * 60 / 0.85 * 3.50 * 10 = 3.128 in.
As = 87.25 * 12/0.90 * 60 (13 – 3.128 / 2) = 1.695 in²
a = 1.695 * 60 / 0.85 * 3.50 * 10= 3.418 in.
As = 87.25 * 12 / 0.90 * 60 (10 – 3.418 / 2) = 1.717 in². Use – 2 # 7 + 2 # 5 bars
Main steel calculation:
Mid section:
As = Mu / φfy (d – a / 2)
= 35.0 * 12 / 0.90 * 60 (13 – 1 / 2) = 0.622 in², a = Asfy / 0.85f’c bw
a = 0.622 * 60 / 0.85 * 3.50 * 10 = 1.254 in.
As = 35.00 * 12 / 0.90 * 60 (13 – 1.254 / 2) = 0.628 in²
a = 0.628 * 60 / 0.85 * 3.50 * 10 = 1.266 in.
As = 35.0 * 12 / 0.90 * 60 (13 – 1.266/2) = 0.63 in². Use – 2 # 6 bars
Shear reinforcement design:
Vs = Vu – φVc
= 22.23 – (2 * 0.85√3500 * 10 * 13) / 1000 = 9.15 kip
4 √fc bw d = (4√3500 * 10 * 13) /1000 = 30.76 kip
Vs < 4√fc bw d So, ok
Stirrup spacing:
1) Smax = Avfy / 50 bw = (2 * 0.11* 60000) / 50 * 10 = 26.40”
2) Smax = d / 2 = 13 / 2 = 6½”
3) Sma = 24”
4) S = φ Avfy d / Vs = 0.85 * 2 * 0.11 * 60000 * 13 / (9.15 * 1000) = 15.94”
Use stirrups # 3 bar @ 6½” c/c
Design of the beam: B2, B5, B8, B12 ( at 4th story )
From load combination:
Maximum moment:
End section:
Negative moment = 108.93 k-ft
Mu = ф ρfy bd² (1- 0.59 ρfy / fc)
d² = Mu / фρfy bd (1- 0.59 ρfy / fc)
ρ max = 0.75 ρb, ρb = 0.85 β1 fc / fy * 87000 / (87000 + 60000)
= 0.85 * 0.85 * 3.5 / 60 * 87000 / (87000 + 60000) = 0.02494
ρ max = 0.75 * 0.02494 = 0.0187
d² = 108.93 * 12 / 0.90 * 0.0187 * 60 * 10(1- 0.59 * 0.0187 * 60 / 3.50)
d = 12.63, Clear cover = 2”, Total depth = 12.63 + 2 = 14.63. Say, d = 15”
Provided Beam size = 15” * 10”, d = 15”- 2”= 13”
Main steel calculation:
As = Mu / φfy (d – a / 2)
= 108.93 * 12 / 0.90 * 60 (13 – 1 / 2) = 1.936 in², a = Asfy / 0.85fc bw,
a = 1.936 * 60 / 0.85 * 3.50 * 10 = 3.904 in.
As = 108.93 * 12 / 0.90 * 60 (13 – 3.904 / 2) = 1.867 in²
a = 1.897 * 60 / 0.85 * 3.50 * 10 = 3.765 in.
As = 108.93 * 12 / 0.90 * 60 (13 – 3.765 / 2) = 2.177 in². Use – 2 # 8 +2 # 5 bars
Main steel calculation:
Mid section:
As = Mu / φfy (d – a / 2)
= 59.56 * 12 / 0.90 * 60 (13 – 1 / 2) = 1.058 in², a = Asfy / 0.85fc bw,
a = 1.058 * 60 / 0.85 * 3.50 * 10 = 2.133 in.
As = 59.56 * 12 / 0.90 * 60 (13 – 2.133 / 2) = 1.108 in²
a = 1.108 * 60 / 0.85 * 3.5 * 10 = 2.234 in.
As = 59.56 * 12 / 0.90 * 60 (13 – 2.234 / 2) = 1.113in². Use – 4 # 5 bars
Shear reinforcement design:
Vs = Vu – φVc
= 26.90 – (2 * 0.85√3500 * 10 * 13) / 1000 = 13.825 kip
4 √fc bw d = (4√3500 * 10 * 13) / 1000 = 30.763 kip
Vs < 4√fc bw d So, ok
Stirrups Spacing:
1) Smax = Avfy / 50 bw = (2 * 0.11 * 60000) / 50 * 10 = 26.40”
2) Smax = d / 2 = 13 / 2 = 6½”
3) Smax = 24”
4) S = φ Avfyd / Vs = 0.85 * 2 * 0.11 * 60000 * 13 / (13.825 * 1000) = 10.55”
Use stirrups # 3 bar @ 6½” c/c
Design of the beam: B14, B17, B20, B23 (at 4th story)
From load combination:
Maximum Moment:
End section:
Negative moment = 164.32 k-ft
Mu = ф ρfy bd² (1 – 0.59 ρfy / fc)
d² = Mu / (ф ρfy bd (1- 0.59 ρfy / fc)
ρ max = 0.75 ρb, ρb = 0.85 β1 fc / fy * 87000 / (87000 + 60000)
= 0.85 * 0.85 * 3.5 / 60 * 87000 / (87000 + 60000) = 0.02494
ρmax = 0.75 * 0.02494 = 0.0187
d² = 164.32 *12 / 0.90 * 0.0187 * 60 * 12 (1 – 0.59 * 0.0187 * 60 / 3.50)
d = 14.16, Clear cover = 2”, Total depth = 14.16 + 2 = 16.16. Say, d = 18”
Provided Beam size = 18” * 10”, d = 18”- 2”= 16”
Main steel calculation:
As = Mu / φfy (d – a / 2)
= 164.32 * 1 / 0.90 * 60 (16 – 1 / 2) = 2.355 in², a = Asfy / 0.85fc bw,
a = 2.355 * 60 / 0.85 * 3.50 * 12 = 3.957 in.
As = 164.32 * 12 / 0.90 * 60 (16 – 3.597 / 2) = 2.604 in²
a = 2.604 * 60 / 0.85 * 3.50 * 10 = 4.376 in.
As = 164.32 * 12 / 0.90 * 60 (16 – 4.376 / 2) = 2.643 in². Use – 2 # 9 +2 # 5 bars
Main steel calculation:
Mid section:
As = Mu / φfy (d – a / 2)
= 103.66 * 12 / 0.90 * 60 (16 – 1 / 2) = 1.49 in², a = Asfy / 0.85fc bw,
a = 1.49 * 60 / 0.85 * 3.5 * 10 = 3.00 in.
As = 103.66 * 12 / 0.90 * 60 (16 – 3.00 / 2) = 1.59 in²
a = 1.59 * 60 / 0.85 * 3.50 * 10 = 3.206 in.
As = 103.66 * 12 / 0.90 * 60 (16 – 3.206 / 2) = 1.60 in². Use – 2 # 7 +2 # 5 bars
Shear reinforcement design:
Vs = Vu – φVc
= 43.60 – (2 * 0.85√3500 * 10 * 16) / 1000 = 24.28 kip
4 √fc bw d = (4√3500 * 12 * 16) / 1000 = 45.435 kip
Vs < 4√fc bw d So, ok
Stirrup spacing:
1) Smax = Avfy / 50 bw = (2 * 0.11 * 60000) / 50 * 10 = 26.40”
2) Smax = d / 2 = 16 / 2 = 8”
3) Smax = 24”
4) S = φAvfy d / Vs = 0.85 * 2 * .11 * 60000 * 16 / (24.28 * 1000) = 7.39 ”
Use stirrups # 3 bar @ 7” c/c
Design of the beam: B13, B15, B16, B18, B19, B21, B22, B24 (at 4th story)
From load combination:
Maximum moment at end section
Negative moment = 115.36 k – ft
Mu = ф ρfy bd² (1- 0.59 ρfy / fc)
d² = Mu / (ф ρfy bd (1- 0.59 ρf / fc)
ρ max = 0.75 ρb, ρb = 0.85 β1 fc / fy * 87000 / (87000 + 60000)
= 0.85 * 0.85 * 3.5 / 60 * 87000 / (87000 + 60000) = 0.02494
ρ max = 0.75 * 0.02494 = 0.0187
d² = 115.36 * 12 / 0.90 * 0.0187 * 60 * 10 (1 – 0.59 * 0.0187 * 60 / 3.50)
d = 13.0, Clear cover = 2”, Total depth = 13 + 2 = 15.0. Say, d = 15”
Provided Beam size = 15” * 10”, d = 15”- 2”= 13”
Main steel calculation:
As = Mu / φfy (d – a / 2)
= 115.36 * 12 / 0.90 * 60 (13 – 1 / 2) = 2.05 in², a = Asfy / 0.85fc bw.
a = 2.05 * 60 / 0.85 * 3.50 * 10 = 4.134 in
As = 115.36 * 12 / 0.90 * 60 (13 – 4.134 / 2) = 2.344 in²
a = 2.344 * 60 / 0.85 * 3.5 * 10 = 4.727 in.
As = 115.36 * 12 / 0.90 * 60 (13 – 4.727 / 2) = 2.41 in². Use – 2 # 8 +2 # 6 bars
Main steel calculation:
Mid section:
As = Mu / φfy (d – a / 2)
= 48.69 * 12 / 0.90 * 60 (13 – 1 / 2) = 0.865 in², a = Asfy / 0.85fc bw,
a = 0.865 * 60 / 0.85 * 3.50 * 10 = 1.744 in
As = 48.69 * 12 / 0.90 * 60 (13-1.744/2) = 0.892 in²
a = 0.892 * 60 / 0.85 * 3.50 * 10 = 1.798 in.
As = 48.69 * 12 / 0.90 * 60 (13 – 1.798 / 2) = 0.894 in². Use – 3 # 5 bars
Shear reinforcement design:
Vs = Vu – φVc
= 32.18 – (2 * 0.85√3500 * 10 * 13) / 1000 = 19.10 kip
4 √fc bw d = (4√3500 * 10 * 13) / 1000 = 30.763kip
Vs < 4√fc bw d So, ok
Stirrup spacing:
1) Smax = Avfy / 50 bw = (2 * 0.11 * 60000) / 50 * 10 = 26.40”
2) Smax = d / 2 = 13 / 2 = 6½”
3) Smax = 24”
4) S = φ Avfy d / Vs = 0.85 * 2 * .11 * 60000 * 13 / (19.10 * 1000) = 7½ ”
Use stirrups # 3 bar @ 6½” c/c
Design of the beam: B1, B3, B4, B6, B7, B9, B10, B11 ( at 3rd story )
From load combination:
Maximum moment:
End section:
Negative moment = 87.25 k-ft
Mu = ф ρfy bd² (1- 0.59 ρfy / fc)
d² = Mu / фρfy bd (1- 0.59 ρfy / fc)
ρ max = 0.75 ρb, ρb = 0.85 β1 fc / fy * 87000 / (87000 + 60000)
= 0.85 * 0.85 * 3.50 / 60 * 87000 / (87000 + 60000) = 0.02494
ρmax = 0.75 * 0.02494 = 0.0187
d² = 87.25 * 12 / 0.90 * 0.0187 * 60 * 10 (1 – 0.59 * 0.0187 * 60 / 3.50)
d = 11.29, Clear cover = 2”, Total depth = 11.29+2 = 13.29. Say, d = 15”
Provided Beam size = 15” * 10”, d = 15”- 2”= 13”
Main steel calculation:
As = Mu / φfy (d – a / 2)
= 87.25 * 12 / 0.90 * 60 (13 – 1 / 2) = 1.551 in², a = Asfy / 0.85fc bw,
a = 1.551 * 60 / 0.85 * 3.50 * 10 = 3.128 in.
As = 87.25 * 12 / 0.90 * 060 (13 – 3.128 / 2) = 1.695 in²
a = 1.695 * 60 / 0.85 * 3.5 * 10 = 3.418 in.
As = 87.25 * 12 / 0.90 * 60 (10 – 3.418 / 2) = 1.717 in². Use – 2 # 7 +2 # 5 bars
Main steel calculation:
Mid section:
As = Mu / φfy (d – a / 2)
= 35.0 * 12 / 0.90 * 60 (13 – 1 / 2) = 0.622 in², a = Asfy / 0.85f’c bw
a = 0.622 * 60 / 0.85 * 3.50 * 10 = 1.254 in.
As = 35.00 * 12 / 0.90 * 60 (13 – 1.254 / 2) = 0.628 in²
a = 0.628 * 60 / 0.85 * 3.50 * 10 = 1.266 in.
As = 35.0 * 2 / 0.90 * 60 (13 – 1.266 / 2) = 0.63 in². Use – 2 # 6 bars
Shear reinforcement design:
Vs = Vu – φVc
= 22.23 – (2 * 0.85√3500 * 10 * 13) / 1000 = 9.15 kip
4 √fc bw d = (4√3500 * 10 * 13) / 1000 = 30.76 kip
Vs < 4√fc bw d So, ok
Stirrup spacing:
1) Smax = Avfy / 50 bw = (2 * 0.11 * 60000) / 50 * 10 = 26.40”
2) Smax = d / 2 = 13 / 2 = 6½”
3) Smax = 24”
4) S = φ Avfyd / Vs = 0.85 * 2 * 0.11 * 60000 * 13 / (9.15 * 1000) =15.94
Use stirrups # 3 bar @ 6½” c/c
Design of the beam: B2, B5, B8, B12 ( at 3rd story )
From load combination:
Maximum moment at end section
Negative moment = 108.93 k-ft
Mu = ф ρfy bd² (1 – 0.59 ρfy / fc)
d² = Mu / фρfy bd (1- 0.59 ρfy / fc)
ρ max = 0.75 ρb, ρb = 0.85 β1 fc / fy * 87000 / (87000 + 60000)
= 0.85 * 0.85 * 3.5 / 60 * 87000 / (87000 + 60000) = 0.02494
ρ max = 0.75 * 0.02494 = 0.0187
d² = 108.93 * 12 / 0.90 * 0.0187 * 60 * 10 (1 – 0.59 * 0.0187 * 60 / 3.50)
d = 12.63, Clear cover = 2”, Total depth = 12.63+2= 14.63. Say, d = 15
Provided Beam size = 15” * 10”, d = 15”- 2”= 13”
Main steel calculation:
As = Mu / φfy (d – a / 2)
= 108.93 * 12 / 0.90 * 60 (13 – 1 / 2) = 1.936 in², a = Asfy / 0.85fc bw.
a = 1.936 * 60 / 0.85 * 3.50 * 10 = 3.904 in.
As = 108.93 * 12 / 0.90 * 60 (13 – 3.904 / 2) = 1.867 in²
a = 1.897 * 60 / 0.85 * 3.5 * 10 = 3.765 in
As = 108.93 * 12 / 0.90 * 60 (13-3.765 / 2) = 2.177 in². Use – 2 # 8 +2 # 5 bars
Main steel calculation:
Mid section:
As = Mu / φfy (d – a / 2)
= 59.56 * 12 / 0.90 * 60 (13 – 1 / 2) = 1.058 in², a = Asfy / 0.85fc bw
a = 1.058 * 60 / 0.85 * 3.5 * 10 = 2.133 in.
As = 59.56 * 12 / 0.90 * 60 (13 – 2.133 / 2) = 1.108 in²
a = 1.108 * 60 / 0.85 * 3.50 * 10 = 2.234 in.
As = 59.56 * 10.90 * 6 (13 – 2.234 / 2) = 1.113in². Use – 4 # 5 bars
Shear reinforcement design:
Vs = Vu – φVc
= 26.90 – (2 * 0.85√3500 * 10 * 13) / 1000 = 13.825 kip
4 √fc bw d = (4√3500 * 10 * 13) / 1000 = 30.763 kip
Vs < 4√fc bw d. So, ok
Stirrup spacing:
1) Smax = Avfy / 50 bw = (2 * 0.11 * 60000) / 50 * 10 = 26.40”
2) Smax = d / 2 = 13 / 2 = 6½”
3) Smax = 24”
4) S = φ Avfyd / Vs = 0.85 * 2 * 0.11 * 60000 * 13 / (13.825 * 1000) = 10.55”
Use stirrups # 3 bar @ 6½” c/c
Design of the beam: B14, B17, B20, B23 ( at 3rd story )
From load combination:
Maximum moment at end section
Negative moment = 164.32 k-ft
Mu = ф ρfy bd² (1- 0.59 ρfy / fc)
d² = Mu / (фρfy bd (1- 0.59 ρfy / fc)
ρ max = 0.75 ρb, ρb = 0.85 β1 f’c / fy * 87000 / (87000 + 60000)
= 0.85 * 0.85 * 3.5 / 60 * 87000 / (87000 + 60000) = 0.02494
ρmax = 0.75 * 0.02494 = 0.0187
d² = 164.32 * 12 / 0.90 * 0.0187 * 60 * 12 (1-0.59 * 0.0187 * 60 / 3.50)
d = 14.16, Clear cover = 2”, Total depth = 14.16+2 = 16.16. Say, d = 18”
Provided Beam size = 18” * 10”, d = 18”- 2”= 16”
Main steel calculation:
As = Mu / φfy (d – a / 2)
= 164.32 * 12 / 0.90 * 60 (16 – 1 / 2) = 2.355 in², a = Asfy / 0.85fc bw
a = 2.355 * 60 / 0.85 * 3.50 * 12 = 3.957 in.
As = 164.32 * 12 / 0.90 * 60 (16 – 3.597 / 2) = 2.604 in²
a = 2.604 * 60 / 0.85 * 3.5 * 10 = 4.376 in.
As = 164.32 * 12 / 0.90 * 60 (16 – 4.376 / 2) = 2.643 in². Use – 2 # 9 +5 # 5 bars
Main steel calculation:
Mid section:
As = Mu / φfy (d – a / 2)
= 103.66 * 12 / 0.90 * 60 (16 – 1 / 2) = 1.49 in², a = Asfy / 0.85fc bw
a = 1.49 * 60 / 0.85 * 3.5 * 10 = 3.00 in.
As = 103.66 * 12 / 0.90 * 60 (16 – 3.00 / 2) = 1.59 in²
a = 1.59 * 60 / 0.85 * 3.50 * 10 = 3.206 in.
As = 103.66 * 12 / 0.90 * 60 (16 – 3.206 / 2) = 1.60 in². Use – 2 # 7 +2 # 5 bars
Shear reinforcement design:
Vs = Vu – φVc
= 43.60 – (2 * 0.85√3500 * 10 * 16) / 1000 = 24.28 kip
4 √fc bw d = (4√3500 * 12 * 16) / 1000 = 45.435 kip
Vs < 4√fc bw d So, ok
Stirrup spacing:
1) Smax = Avfy / 50 bw = (2 * 0.11 * 60000) / 50 * 10 = 26.40”
2) Smax = d / 2 = 16 / 2 = 8”
3) Smax = 24”
4) S = φ Avfy d / Vs = 0.85 * 2 * 0.11 * 60000 * 16 / (24.28 * 1000) = 7.39 in
Use stirrups # 3 bar @ 7” c/c
Design of the beam: B13, B15, B16, B18, B19, B21, B22, B24 (at 3rd story)
From load combination:
Maximum moment at end section
Negative moment = 115.36 k – ft
Mu = ф ρfy bd² (1- 0.59 ρfy / fc)
d² = Mu / (фρfy bd (1- 0.59 ρfy / f’c)
ρ max = 0.75 ρb, ρb = 0.85 β1 fc / fy * 87000 / (87000 + 60000)
= 0.85 * 0.85 * 3.5 / 60 * 87000 / (87000+60000) = 0.02494
ρ max = 0.75 * 0.02494 = 0.0187
d² = 115.36 * 12 / 0.90 * 0.0187 * 60 *10 (1- 0.59 * 0.0187 * 60 / 3.50)
d = 13.0, Clear cover = 2”, Total depth = 13+2 = 15.0. Say, d = 15”
Provided Beam size = 15” * 10”, d = 15”- 2”= 13”
Main steel calculation:
As = Mu / φfy (d – a / 2)
= 115.36 * 12 / 0.90 * 60 (13 – 1 / 2) = 2.05 in², a = Asfy / 0.85fc bw.
a = 2.05 * 60 / 0.85*3.5*10 = 4.134 in.
As = 115.36 * 12 / 0.90 * 60 (13 – 4.134 / 2) = 2.344 in.²
a = 2.344 * 60 / 0.85 * 3.5 * 10 = 4.727 in.
As = 115.36 * 12 / 0.90 * 60 (13 – 4.727 / 2) = 2.41 in². Use – 2 # 8 +2 # 6 bars
Main steel calculation:
Mid section:
As = Mu / φfy (d – a / 2)
= 48.69 * 12 / 0.90 * 60 (13 – 1 / 2) = 0.865 in², a = Asfy / 0.85fc bw,
a = 0.865 * 60 / 0.85 * 3.50 * 10 = 1.744 in.
As = 48.69 * 12 / 0.90 * 60 (13 – 1.744 / 2) = 0.892 in²
a = 0.892 * 60 / 0.85 * 3.5 * 10 = 1.798 in
As = 48.69 * 12/0.90 * 60 (13 – 1.798 / 2) = 0.894 in². Use – 3 # 5 bars
Shear reinforcement design:
Vs = Vu – φVc
= 32.18 – (2 * 0.85√3500 * 10 * 13) / 1000 = 19.10 kip
4 √fc bw d = (4√3500 *10 * 13) / 1000 = 30.763kip
Vs < 4√fc bw d So, ok
Stirrup spacing:
1) Smax = Avfy / 50 bw = (2 * 0.11 * 60000) / 50 * 10 = 26.40”
2) Smax = d / 2 = 13 / 2 = 6½”
3) Smax = 24”
4) S = φ Avfy d / Vs = 0.85 * 2 * .11 * 60000 * 13 / (19.10 * 1000) = 7½”
Use stirrups # 3 bar @ 6½” c/c
Design of the beam: B1, B3, B4, B6, B7, B9, B10, B11 ( at 2nd story )
From load combination:
Maximum moment at end section
Negative moment = 89.0 k – ft
Mu = ф ρfy bd² (1- 0.59 ρfy / fc)
d² = Mu / ф ρfy bd (1- 0.59 ρfy / fc)
ρ max = 0.75 ρb, ρb = 0.85 β1 fc / fy * 87000 / (87000 + 60000)
= 0.85 * 0.85 * 3.5 / 60 * 87000 / (87000 + 60000) = 0.02494
ρ max = 0.75 * 0.02494 = 0.0187
d² = 89.00 * 12 / 0.90 * 0.0187 * 60 * 12 (1 – 0.59 * 0.0187 * 60 / 3.50)
d = 10.42, Clear cover = 2”, Total depth = 10.42+2 = 12.42. Say, d = 15”
Provided Beam size = 15” * 12”, d = 15”- 2”= 13”
Main steel calculation:
As = Mu / φfy (d – a / 2)
= 89.00 * 12 / 0.90 * 60 (13 – 1 / 2) = 1.582 in², a = Asfy / 0.85fc bw
a = 1.582 * 60 / 0.85 * 3.50 * 12 = 2.658 in.
As = 89.0 * 12 / 0.90 * 60 (13 – 2.658 / 2) = 1.694 in²
a = 1.694 * 60 / 0.85 * 3.50 * 10 = 2.847 in.
As = 89.0 * 12 / 0.90 * 60 (13 – 2.847 / 2) = 1.708 in². Use – 4 # 6 bars
Main steel calculation:
Mid section:
As = Mu / φfy (d – a / 2)
= 42.26 * 12 / 0.90 * 60 (13 – 1 / 2) = 0.751 in², a = Asfy / 0.85fc bw
a = 0.751 * 60 / 0.85 * 3.50 * 10 = 1.514 in.
As = 42.26 * 12 / 0.90 * 60 (13 – 1.514 / 2) = 0 .767 in²
a = 0.767 * 60 / 0.85 * 3.50 * 10 = 1.546 in.
As = 42.26 * 12 / 0.90 * 60 (13 – 1.546 / 2) = 0.768 in². Use – 3 # 5 bars
Shear reinforcement design:
Vs = Vu – φVc
= 23.17 – (2 * 0.85√3500 * 10 * 13 / 1000 = 10.10 kip
4 √fc bw d = (4√3500 * 10 * 13) / 1000 = 30.76 kip
Vs < 4√fc bw d So, ok
Stirrup spacing:
1) Smax = Avfy/ 50 bw = (2 * 0.11 * 60000) / 50 * 10 = 26.40”
2) Smax = d / 2 = 13 / 2 = 6½”
3) Smax = 24”
4) S = φ Avfy d / Vs = 0.85 * 2 * 0.11 * 60000 * 13 / (10.10 * 1000) = 14.44”
Use stirrups # 3 bar @ 6½” c/c
Design of the beam: B2, B5, B8, B12 ( at 2nd story )
From load combination:
Maximum moment at end section
Negative moment = 114.44 k – ft
Mu = ф ρfy bd² (1- 0.59 ρfy / fc)
d² = Mu / ф ρfy bd (1- 0.59 ρfy / fc)
ρ max = 0.75 ρb, ρb = 0.85 β1 f’c / fy * 87000 / (87000 + 60000)
= 0.85 * 0.85 * 3.5 / 60 * 87000 / (87000 + 60000) = 0.02494
ρ max = 0.75 * 0.02494 = 0.0187.
d² = 114.44 * 12 / 0.90 * 0.0187 * 60 * 10 (1 – 0.59 * 0.0187 * 60 / 3.50).
d = 12.95, Clear cover = 2”, Total depth = 12.95+2 = 14.95. Say, d = 15”
Provided Beam size = 15” * 10”, d = 15”- 2”= 13”
Main steel calculation:
As = Mu / φfy (d – a / 2)
= 114.44 * 12 / 0.90 * 60 (13 – 1 / 2) = 2.034 in², a = Asfy / 0.85fc bw
a = 2.034 * 60 / 0.85 * 3.50 * 10 = 4.102 in.
As = 114.44 * 12 / 0.90 * 60 (13 – 4.102 / 2) = 2.322 in²
a = 2.322 * 60 / 0.85 * 3.50 * 10 = 4.683 in.
As = 114.44 * 12 / 0.90 * 60 (13 – 4.683 / 2) = 2.386 in². Use – 2 # 9 +2 # 5 bars
Main steel calculation:
Mid section:
As = Mu / φfy (d – a / 2)
= 60.52 * 12 / 0.90 * 60 (13 – 1 / 2) = 1.075 in², a = Asfy / 0.85fc bw
a = 1.075 * 60 / 0.85 * 3.50 * 10 = 2.168 in.
As = 60.52 * 12 / 0.90 * 60 (13 – 2.168 / 2) = 1.128 in²
a = 1.128 * 60 / 0.85 * 3.50 * 10 = 2.274 in.
As = 60.52 * 12 / 0.90 * 60 (13 – 2.274 / 2) = 1.133 in². Use – 4 # 5 bars
Shear reinforcement design:
Vs = Vu – φVc
= 24.47 – (2 * 0.85√3500 * 10 * 13) / 1000 = 17.412 kip
4 √fc bw d = (4√3500 * 10 * 13) / 1000 = 30.763 kip
Vs < 4√fc bw d So, ok
Stirrups Spacing:
1) Smax = Avfy / 50 bw = (2 * 0.11 * 60000) / 50 * 10 = 26.40”
2) Smax = d / 2 = 13 / 2 = 6½”
3) Smax = 24”
4) S = φ Avfy d / Vs = 0.85 * 2 * 0.11 * 60000 * 13 / (17.412 * 1000) = 8.37”
Use stirrups # 3 bar @ 6½” c/c
Design of the beam: B14, B17, B20, B23 ( at 2nd story )
From load combination:
Maximum moment at end section
Negative moment = 169.91 k-ft
Mu = ф ρfy bd² (1- 0.59 ρfy / fc)
d² = Mu / (ф ρfy bd (1- 0.59 ρfy / fc)
ρ max = 0.75 ρb, ρb = 0.85 β1 fc / fy * 87000 / (87000 + 60000)
= 0.85 * 0.85 * 3.5 / 60 * 87000 / (87000 + 60000) = 0.02494
ρ max = 0.75 * 0.02494 = 0.0187
d² = 169.91 * 12 / 0.90 * 0.0187 * 60 * 12 (1-0.59 * 0.0187 * 60 / 3.50)
d = 14.40, Clear cover = 2”, Total depth = 14.40+2 = 16.40. Say, d = 18”
Provided Beam size = 18” * 12”, d = 18”- 2”= 16”
Main steel calculation:
As = Mu / φfy (d – a / 2)
= 169.91 * 12 / 0.90 * 60 (16 – 1 / 2) = 2.43 in², a = Asfy / 0.85fc bw
a = 2.43 * 60 / 0.85 * 3.50 * 12 = 4.08 in.
As = 169.91*12 / 0.90 * 60 (16 – 4.08 / 2) = 2.70 in²
a = 2.70 * 60 / 0.85 * 3.50 * 12 = 4.54 in.
As = 169.91 * 12 / 0.90 * 60 (16 – 4.54 / 2 = 2.75 in². Use – 2 # 9 +2 # 6 bars
Main steel calculation:
Mid section:
As = Mu / φfy (d – a / 2)
= 104.10 *12 / 0.90 * 60 (16 – 1 / 2) = 1.49 in², a = Asfy / 0.85fc bw
a = 1.49 * 60 / 0.85 * 3.50 * 10 = 3.00 in.
As = 104.10 * 12 / 0.90 * 60 (16 – 3.00 / 2) = 1.59 in²
a = 1.59 * 60 / 0.85 * 3.50 * 10 = 3.206 in.
As = 104.10 * 12 / 0.90 * 60 (16 – 3.206 / 2) = 1.60 in². Use – 2 # 7 +2 # 5 bars
Shear reinforcement design:
Vs = Vu – φVc
= 44.19 – (2 * 0.85√3500 * 12 * 16) / 1000 = 24.88 kip
4 √fc bw d = (4√3500 * 12 * 16) / 1000 = 45.435 kip
Vs < 4√fc bw d So, ok
Stirrup spacing:
1) Smax = Avfy / 50 bw = (2 * 0.11 * 60000) / 50 * 10 = 26.40”
2) Smax = d / 2 = 16 / 2 = 8”
3) Smax = 24”
4) S = φAvfy d / Vs = 0.85 * 2 * 0.11 * 60000 * 16 / (24.88 * 1000) =7.21 ”
Use stirrups # 3 bar @ 7” c/c
Design of the beam: B13, B15, B16, B18, B19, B21, B22, B24 (at 2nd story)
From load combination:
Maximum moment at end section
Negative moment = 114.84 k-ft
Mu = ф ρfy bd² (1- 0.59 ρfy / fc)
d² = Mu / (фρfy bd (1- 0.59 ρfy / fc)
ρ max = 0.75 ρb, ρb = 0.85 β1 fc / fy * 87000 / (87000 + 60000)
= 0.85 * 0.85 * 3.5 / 60 * 87000 / (87000 + 60000) = 0.02494
ρ max = 0.75 * 0.02494 = 0.0187
d² = 114.84 *12 / 0.90 * 0.0187 * 60 * 10 (1 – 0.59 * 0.0187 * 60 / 3.50)
d = 12.97, Clear cover = 2”, Total depth = 12.97+2= 14.97
Say, d = 15”
Provided Beam size = 15” * 10”, d = 15”- 2”= 13”
Main steel calculation:
As = Mu / φfy (d – a / 2)
= 114.84 * 12 / 0.90 * 60 (13 – 1 / 2) = 2.041 in², a = Asfy / 0.85fc bw.
a = 2.041*60 / 0.85*3.5*10 = 4.116 in.
As = 114.84 * 12 / 0.90 * 60 (13 – 4.116 / 2) = 2.332 in²
a = 2.332 * 60 / 0.85 * 3.5 * 10 = 4.703 in.
As = 114.84 * 12 / 0.90 * 60 (13 – 4.703 / 2) = 2.396 in². Use – 2 # 8 +2 # 6 bars
Main steel calculation:
Mid section:
As = Mu / φfy (d – a / 2)
= 51.04 * 12 / 0.90 * 60 (13 – 1 / 2) = 0 .907 in², a = Asfy / 0.85fc bw,
a = 0.907 * 60 / 0.85 * 3.5 * 10 = 1.829 in.
As = 51.04 * 12 / 0.90 * 60 (13 – 1.829 / 2) = 0.938 in²
a = 0.938 * 60 / 0.85 * 3.50 *10 = 1.891 in.
As = 51.04 * 12 / 0.90 * 60 (13 – 1.891 / 2) = 0.941 in². Use – 3 # 5 bars
Shear reinforcement design:
Vs = Vu – φVc
= 32.71- (2 * 0.85√3500 * 10 * 13) / 1000 = 18.92 kip
4 √fc bw d = (4√3500 * 10 * 13) / 1000 = 30.763kip
Vs < 4√fc bw d So, ok
Stirrup spacing:
1) Smax = Avfy / 50 bw = (2 * 0.11 * 60000) / 50 * 10 = 26.40”
2) Smax = d / 2 = 13 / 2 = 6½”
3) Smax = 24”
4) S = φ Avfyd / Vs = 0.85 * 2 * 0.11 * 60000 * 13 / (18.92 * 1000) = 7.71”
Use stirrups # 3 bar @ 6½” c/c
Design of the beam: B1, B4, B6, B7, B9, B10, B11 ( at 1st story )
From load combination:
Maximum moment at end section
Negative moment = 89.0 k – ft
Mu = ф ρfy bd² (1 – 0.59 ρfy / fc)
d² = Mu / ф ρfy bd (1- 0.59 ρfy / fc)
ρ max = 0.75 ρb, ρb = 0.85 β1 f’c / fy * 87000 / (87000 + 60000)
= 0.85 * 0.85 * 3.5 / 60 * 87000 / (87000 + 60000) = 0.02494
ρ max = 0.75 * 0.02494 = 0.0187
d² = 89.00 * 12 / 0.90 * 0.0187 * 60 * 12 (1 – 0.59 * 0.0187 * 60 / 3.50)
d = 10.42, Clear cover = 2”, Total depth = 10.42+2 =12.42. Say, d = 15”
Provided Beam size = 15” * 12”, d = 15”- 2” = 13”
Main steel calculation:
As = Mu / φfy (d – a / 2)
= 89.00 * 12 / 0.90 * 60 (13 – 1 / 2) = 1.582 in², a = Asfy / 0.85fc bw.
a = 1.582 * 60 / 0.85 * 3.5 * 12 = 2.658 in.
As = 89.0 * 12 / 0.90 * 60 (13 – 2.658 / 2) = 1.694 in²
a = 1.694 * 60 / 0.85 * 3.50 * 10 = 2.847 in.
As = 89.0 * 12 / 0.90 * 60 (13 – 2.847 / 2) = 1.708 in². Use – 4 # 6 bars
Main steel calculation:
Mid section:
As = Mu / φfy (d – a / 2)
= 42.26 * 12 / 0.90 * 60 (13 – 1 / 2) = 0.751 in², a = Asfy / 0.85fc bw.
a = 0.751 * 60 / 0.85 * 3.5 * 10 = 1.514 in.
As = 42.26 * 12 / 0.90 * 60 (13 – 1.514 / 2) = 0.767 in²
a = 0.767 * 60 / 0.85 * 3.50 * 10 = 1.546 in
As = 42.26 * 12 / 0.90 * 60 (13 – 1.546 / 2) = 0.768 in². Use – 3 # 5 bars
Shear reinforcement design:
Vs = Vu – φVc
= 23.17 – (2 * 0.85√3500 * 10 * 13) / 1000 = 10.10 kip
4 √fc bw d = (4√3500 * 10 * 13) / 1000 = 30.76 kip
Vs < 4√fc bw d So, ok
Stirrup spacing:
1) Smax = Avfy / 50 bw= (2 * 0.11 * 60000 ) / 50 * 10 = 26.40”
2) Smax = d / 2 = 13 / 2 = 6½”
3) Smax = 24”
4) S = φAvfy d / Vs = 0.85 * 0.11 * 60000 * 13 / (10.10 * 1000) =14.44”
Use stirrups # 3 bar @ 6½” c/c
Design of the beam: B2, B5, B8, B12 ( at 1st story )
From load combination:
Maximum moment at end section
Negative moment = 114.44 k – ft
Mu = ф ρfy bd² (1 – 0.59 ρfy / fc)
d² = Mu / ф ρfy bd (1 – 0.59 ρfy / fc)
ρ max = 0.75 ρb , ρb = 0.85 β1 fc / fy * 87000 / (87000 + 60000)
= 0.85 * 0.85 * 3.5 / 60 * 87000 / (87000 + 60000) = 0.02494
ρmax = 0.75 * 0.02494 = 0.0187
d² = 114.44 * 12 / 0.90 * 0.0187 * 60 * 10 (1 – 0.59 * 0.0187 * 60 / 3.50)
d = 12.95, Clear cover = 2”, Total depth = 12.95+2 = 14.95. Say, d = 15 “
Provided Beam size = 15” * 10”, d = 15”- 2”= 13”
Main steel calculation:
As = Mu / φfy (d – a / 2)
= 114.44 * 12 / 0.90 * 60 (13 – 1 / 2) = 2.034 in², a = Asfy / 0.85fc bw
a = 2.034 * 60 / 0.85 * 3.5 * 10 = 4.102 in.
As = 114.44 * 12 / 0.90 * 60 (13 – 4.102 / 2) = 2.322 in²
a = 2.322 * 60 / 0.85 * 3.5 * 10 = 4.683 in
As = 114.44 * 12 / 0.90 * 60 (13 – 4.683 / 2) = 2.386 in². Use – 2 # 9 +2 # 5 bars
Main steel calculation:
Mid section:
As = Mu / φfy (d – a / 2)
= 60.52 * 12 / 0.90 * 60 (13 – 1 / 2) = 1.075 in², a = Asfy / 0.85fc bw
a = 1.075 * 60 / 0.85 * 3.5 * 10 = 2.168 in.
As = 60.52 * 12 / 0.90 * 60 (13 – 2.168 / 2) = 1.128 in²
a = 1.128 * 60 / 0.85 * 3.50 * 10 = 2.274 in
As = 60.52 * 12 / 0.90 * 60 (13 – 2.274 / 2) = 1.133 in². Use – 4 # 5 bars
Shear reinforcement design:
Vs = Vu – φVc
= 24.47 – (2 * 0.85√3500 * 10 * 13) / 1000 = 17.412 kip
4 √fc bw d = (4√3500 * 10 * 13) / 1000 = 30.763 kip
Vs < 4√fc bw d So, ok
Stirrup spacing:
1) Smax = Avfy / 50 bw = (2 * 0.11 * 60000) / 50 * 10 = 26.40”
2) Smax = d / 2 = 13 / 2 = 6½”
3) Smax = 24”
4) S = φ Avfy d / Vs = 0.85 * 2 * 0.11 * 60000 * 13 / (17.412 * 1000) = 8.37”
Use stirrups # 3 bar @ 6½” c/c
Design of the beam: B14, B17, B20, B23 ( at 1st story )
From load combination:
Maximum moment at mid section
Negative moment = 169.91 k – ft
Mu = ф ρfy bd² (1 – 0.59 ρfy / fc)
d² = Mu / (фρfy bd (1 – 0.59 ρfy / fc)
ρ max = 0.75 ρb , ρb = 0.85 β1 fc / fy * 87000 / (87000 + 60000)
= 0.85 * 0.85 * 3.5 / 60 * 87000 / (87000 + 60000) = 0.02494
ρ max = 0.75 * 0.02494 = 0.0187
d² = 169.91 * 12 / 0.90 * 0.0187 * 60 * 12 (1- 0.59 * 0.0187 * 60 / 3.50)
d =14.40, Clear cover = 2”, Total depth = 14.40+2= 16.40. Say, d = 18”
Provided Beam size = 18” * 12”, d = 18”- 2”= 16”
Main steel calculation:
As = Mu / φfy (d – a / 2)
= 169.91 * 12 / 0.90 * 60 (16 -1 /2) = 2.43 in², a = Asfy / 0.85fc bw.
a = 2.43 * 60 / 0.85 * 3.5 * 12 = 4.08
As = 169.91 * 12 / 0.90 * 60 (16 – 4.08 / 2) = 2.70 in²
a = 2.70 * 60 / 0.85 * 3.5 * 12 = 4.54 in.
As = 169.91 * 12 / 0.90 * 60 (16 – 4.54 / 2) = 2.75 in². Use – 2 # 9 +2 # 6 bars
Main steel calculation:
Mid section:
As = Mu / φfy (d – a / 2)
= 104.10 * 12 / 0.90 * 60 (16 – 1 / 2) = 1.49 in², a = Asfy / 0.85f’c bw
a = 1.49 * 60 / 0.85 * 3.5 * 10 = 3.0 in
As = 104.10 * 12 / 0.90 * 60 (16 – 3.00 / 2) = 1.59 in²
a = 1.59 * 60 / 0.85 * 3.50 *10 = 3.206 in.
As = 104.10 * 12 / 0.90 * 60 (16 – 3.206 / 2) = 1.60 in². Use – 2 # 7 +2 # 5 bars
Shear reinforcement design:
Vs = Vu – φVc
= 44.19 – (2 * 0.85√3500 * 12 * 16) / 1000 = 24.88 kip
4 √fc bw d = (4√3500 * 12 * 16) / 1000 = 45.435 kip
Vs < 4√fc bw d So, ok
Stirrup spacing:
1) Smax = Avfy / 50 bw = (2 * 0 .11 * 60000) / 50 * 10 = 26.40”
2) Smax = d / 2 = 16 / 2 = 8”
3) Smax = 24”
4) S = φ Avfyd / Vs = 0.85 * 2 * 0.11 * 60000 * 16 / (24.88 * 1000) = 7.21 ”
Use stirrups # 3 bar @ 7” c/c
Design of the beam: B13, B15, B16, B18, B19, B21, B22, B24 (at 1st story)
From load combination:
Maximum moment at end section
Negative moment = 114.84 k-ft
Mu = ф ρfy bd² (1 – 0.59 ρfy / fc)
d² = Mu / (ф ρfy bd (1 – 0.59ρfy / fc)
ρ max = 0.75 ρb, ρb = 0.85 β1 fc / fy * 87000 / (87000 + 60000)
= 0.85 * 0.85 * 3.5 / 60 * 87000 / (87000 + 60000) = 0.02494
ρ max = 0.75 * 0.02494 = 0.0187
d² = 114.84 * 12 / 0.90 * 0.0187 * 60 * 10 (1 – 0.59 * 0.0187 * 60 / 3.50)
d = 12.97, Clear cover = 2”, Total depth = 12.97+2 = 14.97. Say, d = 15”
Provided Beam size = 15” * 10”, d = 15”- 2”= 13”
Main steel calculation:
As = Mu / φfy (d – a / 2)
= 114.84 * 12 / 0.90 * 60 (13 – 1 / 2) = 2.041 in², a = Asfy / 0.85fc bw
a = 2.041 * 60 / 0.85 * 3.5 * 10 = 4.116 in.
As = 114.84 * 12 / 0.90 * 60 (13 – 4.116 / 2) = 2.332 in²
a = 2.332 * 60 / 0.85 * 3.5 * 10= 4.703 in.
As = 114.84 * 12 / 0.90 * 60 (13 – 4.703 / 2) = 2.396 in². Use – 2 # 8 +2 # 6 bars
Main steel calculation:
Mid section:
As = Mu / φfy (d – a / 2)
= 51.04 * 12 / 0.90 * 60 (13 – 1 / 2) = 0 .907 in², a = Asfy / 0.85fc bw
a = 0.907 * 60 / 0.85 * 3.5 * 10 = 1.829 in.
As = 51.04 * 12 / 0.90 * 60 (13 – 1.829 / 2) = 0.938 in²
a = 0.938 * 60 / 0.85 * 3.50 * 10 = 1.891 in.
As = 51.04 * 12 / 0.90 * 60 (13 – 1.891 / 2) = 0.941 in². Use – 3 # 5 bars
Shear reinforcement design:
Vs = Vu – φVc
= 32.71 – (2 * 0.85√3500 * 10 * 13) / 1000 = 18.92 kip
4 √fc bwd = (4√3500 *10 * 13) / 1000 = 30.763kip
Vs < 4√fc bw d So, ok
Stirrup spacing:
1) Smax = Avfy / 50 bw = (2 * 0.11 * 60000) / 50 * 10 = 26.40”
2) Smax = d / 2 = 13 / 2 = 6½”
3) Smax = 24”
4) S = φ Avfy d/ Vs = 0.85 * 2 * 0.11 * 60000 * 13 / (18.92 * 1000) = 7.71 ”
Use stirrups # 3 bar @ 6½” c/c
The table below is showing cross section of different floor beams at their end sections and mid section.
Column design for beam supported structure.
Design of the Column: C1, C4, C10, C16
From load combination:
Pu = 329.81 Kips = 329.81*1.20 = 396 Kips
Now, Pu = α ф Ag (0 .85 f’c (1- ρg) + ρg fy)
Or 396 = 0.80 * 0.65 * Ag (0.85 * 3.5 (1- 0.025) + 0.025 * 60)
Or 396 = 2.288 Ag Or Ag = 173.076 in2 Or Ag = 10” * 18”
Provided Column size = 10” * 18”, Ag = 180 in2
Main steel calculation:
Pu = α ф (0 .85 f’c (Ag – A) + Asfy)
Or 396 = 0.80 * 0.65 (0.85 * 3.5 (180 – As) + As * 60)
Or 396 = 278.46 – 1.547As + 31.20 As. Or As = 3.963 in2
Use 4 # 8 bars +2 # 6 bars, As = 4.04 in2
Tie design:
Spacing: S = 16 D = 16 * 6 / 8 = 12” c/c, S = 48 d = 48 * 3 / 8 = 18” c/c
At least lateral dimension, S = 10” c/c. Use # 3 bar ties @ 10” c/c.
Y – Axis:
γ = 13 / 18 = 0.72, ex = Mx / P = 56.093 * 12 / 329.81= 2.04 in
ey = My / P = 1.78 * 12/329.81 = 0.06 in, ex / h = 2.04 / 18 = 0.113
Reinforcement Ratio: ρg =As / A g = 4.04 / 180 = 0.022
From Graph: Pn yo / f′c Ag = 0.91
Or Pn yo = 0.91 * 3.50 * 180 = 573.30 kips
Po / f′c Ag = 1.11 Or Po = 1.11 * 3.50 * 180 = 699.30 kips
X – Axis:
γ = 5 / 10 = 0.5, ex = Mx / P = 56.093 * 12/329.81= 2.04 in
ey = My / P = 1.78*12 / 329.81 = 0.06 in, ey / h = 0.06 / 10 = 0.006
Reinforcement ratio: ρg =As / A g = 4.04 / 180 = 0.022
From Graph: Pn xo / f′c Ag = 1.02
Or Pn xo = 1.02 * 3.50 * 180 = 642.60 kips
Po /f′c Ag = 1.11 Or Po = 1.11 * 3.50 * 180 = 699.30 kips
Here – 1 / Pn = 1 / Pnxo + 1 / Pnyo – 1 / Po
Or 1 / Pn = 1 / 642.60 + 1 / 573.30 – 1 / 699.30. Or Pn = 534.64 kips
Now, Pu = ф Pn. Or Pu = 0.65 * 534.64
Or Pu = 347.516 kips > 329.81 kips. So design is ok.
Design of the Column : C2, C3, C5, C8, C9, C12, C14, C15
From load combination:
Pu = 532.65 Kips = 532.65 * 1.20 = 639.18 Kips
Now, Pu = α ф Ag (0 .85 f’c (1- ρg) + ρg fy)
Or 639.18 = 0.80 * 0.65 * Ag (0.85 * 3.5 (1- 0.025) + 0.025 * 60)
Or 639.18 = 2.288 Ag or Ag = 279.36 in2 or Ag= 12” *24”
Provided Column size = 12” * 24”, Ag = 288 in2
Main steel calculation:
Pu = α ф (0 .85 f′c (Ag – As) + Asfy)
Or 639.18 = 0.80 * 0.65 (0.85 * 3.5 (288 – As) + As * 60)
Or 639.18 = 445.54 – 1.547 As + 31.20 As
Or As = 6.53 in2 Use 4 # 8 bars + 8 # 6 bars As = 6.68 in2
Tie design:
Spacing: S = 16 D = 16 * 6 / 8 = 12” c/c, S = 48 d = 48 * 3 / 8 = 18” c/c
At least lateral dimension: S = 12” c/c, Use # 3 bar ties @ 12” c/c.
Y – Axis:
γ = 19 / 24 = 0.79, ex = Mx / P = 54.898 * 12 / 532.65 = 1.24 in
ey = My / P = 1.534 * 12 / 532.65 = 0.035 in, ex / h = 1.24 / 24 = 0.052
Reinforcement ratio: ρg = As / A g = 6.68 / 288 = 0.023
From Graph: Pn yo / f′c Ag = 0.98
Or Pn yo = 0.98 * 3.50 * 288 = 987.84 kips
Po / f′c Ag = 1.13 Or Po = 1.13 * 3.50 * 288 = 1139.04 kips
X – Axis: γ = 7 / 12 = 0.58, ex = Mx / P = 54.898 * 12 / 532.65 = 1.24 in
ey = My / P = 1.534 * 12 / 532.65 = 0.035 in, ey / h = 0.035 / 12 = 0.0029
Reinforcement Ratio: ρg = As / A g = 6.68 / 288 = 0.023
From Graph: Pn xo / f′c Ag = 1.13
Or Pn xo = 1.13 * 3.50 * 288 = 1139.04 kips
Po / f′c Ag = 1.0 Or Po = 1.05 * 3.50 * 288 = 1058.40 kips
Here – 1 / Pn = 1 / Pnxo + 1 / Pnyo – 1 / Po
Or 1 / Pn = 1 / 1058.40 + 1 / 987.84 – 1 / 1139.04 or Pn = 926.61 kips
Now, Pu = ф Pn or Pu = 0.65 * 926.61
Or Pu = 602.30 kips > 532.65 kips, so design is ok.
Design of the Column : C6, C7, C11, C13
From load combination:
Pu = 865.56 Kips = 865.56 * 1.20 = 1038.67 Kips
Now, Pu = α ф Ag (0 .85 f’c (1- ρg) + ρg fy)
Or 1038.67 = 0.80*0.65 * Ag (0.85 * 3.5 (1- 0.025) + 0.025 * 60)
Or 1038.67 = 2.288 Ag or Ag = 454 in2 or Ag = 18” * 26”
Provided Column size = 18” * 26”, Ag = 468 in2
Main steel calculation:
Pu = α ф (0 .85 f’c (Ag – As) + Asfy)
Or 1038.67 = 0.80 * 0.65 (0.85 * 3.5 (468 – As) + As * 60)
Or 1038.67 = 723.99– 1.547As + 31.20 As
Or As = 10.61 in2 use 4 # 10 bars + 6 # 9 bars As = 11.08 in2
Tie design:
Spacing: S = 16 D = 16 * 9/8 = 18” c/c, S = 48 d = 48 * 3/8 = 18” c/c
At least lateral dimension: S = 18” c/c, use # 3 bar ties @ 18” c/c.
Y – Axis:
γ = 21 / 26 = 0.80, ex = Mx / P = 0.971 * 12 / 865.56 = 0.013 in
ey = My / P = 61.64 * 12 / 865.56 = 0.85 in, ex / h = 0.013 / 26 = 0.0005
Reinforcement ratio: ρg = A s / A g = 11.08 / 468 = 0.024
From Graph: Pn yo / f′c Ag = 1.15
Or Pn yo = 1.15 * 3.50 * 468 = 1883.70 kips
Po / f′c Ag = 1.15 or Po = 1.15 * 3.50 * 468 = 1883.70 kips
X – Axis:
γ = 13 / 18 = 0.72, ex = Mx / P = 0.013 in, ey = My / P = 0.85 in
ey / h = 0.85 / 18 = 0.047
Reinforcement ratio: ρg = As / A g = 0.024
From Graph: Pn xo / f′c Ag = 1.00
Or Pn xo = 1.00 * 3.50 * 468 = 1638 kips
Po / f′cAg = 1.15 or Po = 1.15 * 3.50 * 468 = 1883.70 kips
Here – 1 / Pn = 1 / Pnxo + 1 / Pnyo – 1 / Po
Or 1/Pn = 1 / 1638 + 1 / 1883.70 – 1 / 1883.7 or Pn = 1638 kips
Now, Pu = ф Pn, or Pu = 0.65 * 163
The table below is showing size of different columns of the beam supported structure.
Table 3.16: Cross -section of the Column of the beam supported structure
Column design for flat plate structure
Design of the Column : C1, C4, C10, C16
From load combination:
Pu = 232.26 Kips = 232.26 * 2.0 = 464.52 Kips
Now, Pu = α ф Ag (0 .85 f’c (1- ρg) + ρg fy)
Or 464.52 = 0.80 * 0.65 * Ag (0.85 * 3.50 (1- 0.03) + 0.03 * 60)
Or 464.52 = 2.44 Ag Or Ag = 190.40 in2. Or Ag = 13.79” *13.79”
Provided Column size = 15” *15”, Ag = 225 in
Main steel calculation:
Pu = α ф (0 .85 fc (Ag – As) + Asfy)
Or 464.52 = 0.80 * 0.65 (0.85 * 3.50 (225 – As) + As * 60)
Or 464.52 = 348.70 – 1.547As + 31.20 As. Or As = 3.92 in2
Use 4 # 9 bars, As = 4.00 in2
Tie design:
Spacing: S = 16 D = 16 * 9/8 = 18” c/c, S = 48 d = 48 * 3 / 8 = 18” c/c
At least lateral dimension: S = 15” c/c, use # 3 bar ties @ 15” c/c.
Y – Axis:
γ = 10 / 15 = 0.67, ex = Mx / P = 94.34 * 12/232.26 = 4.87 in
ey = My / P = 3.293 * 12/232.26 = 0.17 in, ex / h = 4.87 / 15 = 0.32
Reinforcement ratio:
ρg = As / A g = 4.00 / 225 = 0.018
From Graph,
Pn yo / f′c Ag = 0.53
Or Pn yo = 0.53 * 3.50 * 225 = 417.37 kips, Po/ f′c Ag = 1.09
Or Po = 1.09 * 3.50 * 225 = 858.37 kips
X – Axis:
γ = 10 / 15 = 0.67, ex = Mx / P = 4.87 in, ey = My / P = 0.17 in
ey / h = 0.17 / 15 = 0.011
Reinforcement Ratio: ρg = As / A g = 0.018
From Graph:
Pn xo / f′c Ag = 1.06 Or Pn xo = 1.06 * 3.50 * 225 = 834.75 kips
Po / f′c Ag =1.09 Or Po = 1.09 * 3.50 * 225 = 858.37 kips
Here – 1/ Pn = 1 / Pnxo + 1 / Pnyo – 1 / Po
Or 1/Pn = 1 / 834.75+ 1 / 417.37– 1 / 858.37 Or Pn = 411.70 kips
Now, Pu = ф Pn. Or Pu = 0.65 * 411.70
Or Pu = 267.60 kips > 232.26 kips. So design is ok.
Design of the Column : C2, C3, C5, C8, C9, C12, C14, C15
From load combination:
Pu = 469.38 Kips = 469.38 * 1.20 = 563.25 Kips
Now, Pu = α ф Ag (0 .85 f’c (1- ρg) + ρg fy)
Or 563.25 = 0.80 * 0.65 * Ag (0.85 * 3.50 (1- 0.025) + 0.025 * 60)
Or 563.25 = 2.288 Ag Or Ag = 246.18 in2
Or Ag =12” *24”
Provided Column size =12” *24”
Ag = 288 in2
Main steel calculation:
Pu = α ф(0 .85 f’c (Ag – As) + Asfy)
Or 563.25 = 0.80 * 0.65 (0.85 * 3.50 (288 – As) + As * 60)
Or 563.25 = 445.54 – 1.547As + 31.20 As Or As = 3.97 in2
Use 4 # 8 bars + 2 # 6 bars, As = 4.04 in2
Tie design:
Spacing: S = 16 D = 16 * 6 / 8 = 12” c/c, S = 48 d = 48 * 3 / 8 = 18” c/c
At least lateral dimension, S = 12” c/c
Use # 3 bar ties @ 12” c/c.
Y – Axis:
γ = 19 / 24 = 0.79, ex = Mx / P = 94.668 * 12 / 469.38 = 2.42 in
ey = My / P = 2.533 * 12 / 469.38 = 0.065 in, ex / h = 2.42 / 24 = 0.10
Reinforcement ratio:
ρg = As / A g = 4.04 / 288 = 0.014
From Graph: Pn yo / f′c Ag = 0.86
Or Pn yo = 0.86 * 3.50 * 288 = 866.88 kips
Po / f′c Ag = 1.04 Or Po = 1.04 * 3.50 * 288 = 1048.32 kips
X – Axis:
γ = 7 / 12 = 0.58, ex = Mx / P = 2.42 in, ey = My / P = 0.065 in
ey / h = 0.85 / 18 = 0.047
Reinforcement ratio: ρg =As / A g = 0.014
From Graph: Pn xo / f′c Ag = 1.04
Or Pn xo = 1.04 * 3.50 * 288 = 1048.32 kips
Po / f′c Ag = 1.04 Or Po = 1.04 * 3.50 * 288 = 1048.32 kips
Here – 1 / Pn = 1 / Pnxo + 1 / Pnyo – 1 / Po
Or 1 / Pn = 1 / 1048.32+ 1 / 866.88– 1 / 1048.32
Or Pn = 869.56 kips
Now, Pu = ф Pn. Or Pu = 0.65 * 869.56
Or Pu = 565.21 kips > 469.38 kips. So design is ok.
Design of the Column : C6, C7, C11, C13
From load combination:
Pu = 1075.60 Kips = 1075.60 * 1.40 = 1505.84 Kips
Now, Pu = α ф Ag (0 .85 f’c (1- ρg) + ρg fy)
Or 1505.84 = 0.80 * 0.65 * Ag (0.85 * 3.50 (1- 0.03) + 0.03 * 60)
Or 1505.84 = 2.44 Ag Or Ag = 617.15 in Or Ag = 22” * 30”
Provided Column size = 22” * 30”
Ag = 660 in2
Main steel calculation:
Pu = α ф (0 .85 f’c (Ag – As) + Asfy)
Or 1505.84 = 0.80 * 0.65 (0.85 * 3.50 (660 – As) + As * 60)
Or 1505.84 =1021.02 – 1.547As + 31.20 As
Or As = 16.35 in2
Use 4 # 10 bars + 12 # 9 bars, As = 17.08 in2
Tie design:
Spacing: S = 16 D = 16 * 9 / 8 = 18” c/c, S = 48 d = 48 * 3 / 8 = 18” c/c
At least lateral dimension, S = 22” c/c, Use # 3 bar ties @ 18” c/c.
Y – Axis:
γ = 25 / 30 = 0.83, ex = Mx / P = 4.06 * 12 / 1075.60 = 0.045 in
ey = My / P = 135.407 * 12 / 1075.60 = 1.51 in
ex / h = 0.045 / 30 = 0.0015
Reinforcement ratio: ρg = As / A g = 17.08 / 660 = 0.026
From Graph: Pn yo / f′c Ag = 1.108
Or Pn yo = 1.108 * 3.50 * 660 = 2559.48 kips
Po / f′c Ag = 1.20 Or Po = 1.20 * 3.50 * 660 = 2772 kips
X – Axis:
γ = 17 / 22 = 0.77, ex = Mx / P = 0.045 in, ey = My / P = 1.51 in
ey / h = 1.51 / 22 = 0.0686
Reinforcement ratio: ρg = As / A g = 0.026
From Graph: Pn xo / f′c Ag = 1.09
Or Pn xo = 1.09 * 3.50 * 660 = 2517.90 kips
Po/ f′c Ag = 1.20
Or Po = 1.20 * 3.50 * 660 = 2772 kips
Here – 1 / Pn = 1 / Pnxo + 1 / Pnyo – 1 / Po
Or 1 / Pn = 1 / 2517.90 + 1 / 2559.48 – 1 / 2772
Or Pn = 2341.31kips
Now, Pu = ф Pn. Or Pu = 0.65 * 2341.31
Or Pu = 1521.85 kips > 1075.60 kips. So design is ok.
The table below is showing size of different columns of the flat plate structure
Table 3.17: Cross section of the column elements for flat plate structure.
Some are parts:
Analysis Between a Beam Supported Structure and a Flat Plate Structure (Part 1)
Analysis Between a Beam Supported Structure and a Flat Plate Structure (Part 2)
Analysis Between a Beam Supported Structure and a Flat Plate Structure (Part 3)